BECKHOFF New Automation Technology Documentation | EN # EL6070 License Key Terminal for TwinCAT 3.1 # **Table of Contents** | 1 | Fore | word | | 5 | | | |---|-------|--|--|----|--|--| | | 1.1 | Notes or | n the documentation | 5 | | | | | 1.2 | Safety in | nstructions | 6 | | | | | 1.3 | Docume | ntation issue status | 7 | | | | | 1.4 | Version | identification of EtherCAT devices | 8 | | | | | | 1.4.1 | Beckhoff Identification Code (BIC) | 8 | | | | | | 1.4.2 | General notes on marking | 10 | | | | | | 1.4.3 | Version identification of EL terminals | 11 | | | | | | 1.4.4 | Beckhoff Identification Code (BIC) | 12 | | | | | | 1.4.5 | Electronic access to the BIC (eBIC) | 14 | | | | 2 | Prod | uct desc | ription | 16 | | | | | 2.1 | License | key terminal for TwinCAT 3.1 | 16 | | | | | 2.2 | EL6070 | - Technical data | 17 | | | | 3 | Basic | cs comm | unication | 18 | | | | | 3.1 | EtherCA | .T basics | 18 | | | | | 3.2 | EtherCA | .T cabling – wire-bound | 18 | | | | | 3.3 | General | notes for setting the watchdog | 19 | | | | | 3.4 | EtherCA | T State Machine | 21 | | | | | 3.5 | CoE Inte | erface | 22 | | | | | 3.6 | Distribut | ed Clock | 27 | | | | 4 | Insta | llation | | 28 | | | | | 4.1 | Instruction | ons for ESD protection | 28 | | | | | 4.2 | Explosio | on protection | 29 | | | | | | 4.2.1 | ATEX - Special conditions (extended temperature range) | 29 | | | | | | 4.2.2 | IECEx - Special conditions | 30 | | | | | | 4.2.3 | Continuative documentation for ATEX and IECEx | 31 | | | | | | 4.2.4 | cFMus - Special conditions | 32 | | | | | | 4.2.5 | Continuative documentation for cFMus | 33 | | | | | 4.3 | UL notic | e | 34 | | | | | 4.4 | Installati | on on mounting rails | 35 | | | | | 4.5 | Installati | on instructions for enhanced mechanical load capacity | 38 | | | | | 4.6 | Installati | on positions | 39 | | | | | 4.7 | Position | ing of passive Terminals | 41 | | | | | 4.8 | Note - P | ower supply | 42 | | | | | 4.9 | EL6070 | - LEDs and connection | 43 | | | | | 4.10 | Disposa | l | 44 | | | | 5 | Com | missioni | ng | 45 | | | | | 5.1 | Basic fu | nction principles | 45 | | | | | 5.2 | Notes regarding ESI device description | | | | | | | 5.3 | General | Notes - EtherCAT Slave Application | 51 | | | | | 5.4 | Object d | lescription and parameterization | 59 | | | | | 5.5 | Reading | and writing files | 63 | | | | 6 | Appe | ndix | | 66 | | | | 6.1 | EtherCAT AL Status Codes | 66 | |-----|--------------------------|----| | 6.2 | Firmware compatibility | 67 | | 6.3 | Support and Service | 68 | # 1 Foreword #### 1.1 Notes on the documentation #### Intended audience This description is only intended for the use of trained specialists in control and automation engineering who are familiar with the applicable national standards. It is essential that the documentation and the following notes and explanations are followed when installing and commissioning these components. It is the duty of the technical personnel to use the documentation published at the respective time of each installation and commissioning. The responsible staff must ensure that the application or use of the products described satisfy all the requirements for safety, including all the relevant laws, regulations, guidelines and standards. #### **Disclaimer** The documentation has been prepared with care. The products described are, however, constantly under development. We reserve the right to revise and change the documentation at any time and without prior announcement. No claims for the modification of products that have already been supplied may be made on the basis of the data, diagrams and descriptions in this documentation. #### **Trademarks** Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by Beckhoff Automation GmbH. Other designations used in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owners. #### **Patent Pending** The EtherCAT Technology is covered, including but not limited to the following patent applications and patents: EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702 with corresponding applications or registrations in various other countries. EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany. #### Copyright © Beckhoff Automation GmbH & Co. KG, Germany. The reproduction, distribution and utilization of this document as well as the communication of its contents to others without express authorization are prohibited. Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design. # 1.2 Safety instructions #### **Safety regulations** Please note the following safety instructions and explanations! Product-specific safety instructions can be found on following pages or in the areas mounting, wiring, commissioning etc. #### **Exclusion of liability** All the components are supplied in particular hardware and software configurations appropriate for the application. Modifications to hardware or software configurations other than those described in the documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG. #### **Personnel qualification** This description is only intended for trained specialists in control, automation and drive engineering who are familiar with the applicable national standards. #### **Description of instructions** In this documentation the following instructions are used. These instructions must be read carefully and followed without fail! #### **▲ DANGER** #### Serious risk of injury! Failure to follow this safety instruction directly endangers the life and health of persons. #### **⚠ WARNING** #### Risk of injury! Failure to follow this safety instruction endangers the life and health of persons. #### **A CAUTION** #### Personal injuries! Failure to follow this safety instruction can lead to injuries to persons. #### NOTE #### Damage to environment/equipment or data loss Failure to follow this instruction can lead to environmental damage, equipment damage or data loss. #### Tip or pointer This symbol indicates information that contributes to better understanding. # 1.3 Documentation issue status | Version | Comment | |---------|---| | 2.9 | Update chapter "Basic Function Principles" | | | Update chapter "Object description and parameterization" | | | Update structure | | 2.8 | Update chapter "Basic Function Principles" | | | Update chapter "Object description and parameterization" | | | Update structure | | | Update revision status | | 2.7 | Update chapter "Object description and parameterization" | | | Update chapter "Technical data" | | 2.6 | Update chapter "Commissioning" | | 2.5 | Addenda chapter "Reading and writing of files" incl. example program | | 2.4 | Update chapter "Technical data" | | | Addenda chapter "Instructions for ESD protection" | | | Addenda chapter "UL notice" | | 2.3 | Update chapter "Notes on the documentation" | | | Update chapter "Technical data" | | | Addenda chapter "Installation instructions for enhanced mechanical load capacity" | | 2.2 | Update chapter "Technical data", ET | | 2.1 | Update structure | | 2.0 | Addenda chapter "Basic function principles" | | | 1st PDF publication | | 1.1 | Minor corrections & addenda | | 1.0 | Corrections & addenda 1st public issue | | 0,1 | Preliminary documentation für EL6070 | # 1.4 Version identification of EtherCAT devices # 1.4.1 Beckhoff Identification Code (BIC) The Beckhoff Identification Code (BIC) is increasingly being applied to Beckhoff products to uniquely identify the product. The BIC is represented as a Data Matrix Code (DMC, code scheme ECC200), the content is based on the ANSI standard MH10.8.2-2016. Fig. 1: BIC as data matrix code (DMC, code scheme ECC200) The BIC will be introduced step by step across all product groups. Depending on the product, it can be found in the following places: - · on the packaging unit - · directly on the product (if space suffices) - on the packaging unit and the product The BIC is machine-readable and contains information that can also be used by the customer for handling and product management. Each piece of information can be uniquely identified using the so-called data identifier (ANSI MH10.8.2-2016). The data identifier is followed by a character string. Both together have a maximum length according to the table below. If the information is shorter, spaces are added to it. The data under positions 1 to 4 are always available. The following information is contained: | Item
no. | Type of information | Explanation | Data identifier | Number of digits incl. data identifier | Example | |-------------|---------------------------------------|--|-----------------|--|----------------------| | 1 | Beckhoff order number | Beckhoff order number | 1P | 8 | 1P072222 | | 2 | Beckhoff Traceability
Number (BTN) | Unique serial number, see note below | S | 12 | SBTNk4p562d7 | | 3 | Article description | Beckhoff article
description, e.g.
EL1008 | 1K | 32 | 1KEL1809 | | 4 | Quantity | Quantity in packaging unit, e.g. 1, 10, etc. | Q | 6 | Q1 | | 5 | Batch number | Optional: Year and week of production | 2P | 14 | 2P401503180016 | | 6 | ID/serial number | Optional: Present-day
serial number system,
e.g. with safety products
or calibrated terminals | 51S | 12 | 51S 678294104 | | 7 | Variant number | Optional: Product variant number on the basis of standard products | 30P | 32 |
30PF971, 2*K183 | | | | | | | | Further types of information and data identifiers are used by Beckhoff and serve internal processes. #### **Structure of the BIC** Example of composite information from item 1 to 4 and 6. The data identifiers are marked in red for better display: #### **BTN** An important component of the BIC is the Beckhoff Traceability Number (BTN, item no. 2). The BTN is a unique serial number consisting of eight characters that will replace all other serial number systems at Beckhoff in the long term (e.g. batch designations on IO components, previous serial number range for safety products, etc.). The BTN will also be introduced step by step, so it may happen that the BTN is not yet coded in the BIC. #### NOTE This information has been carefully prepared. However, the procedure described is constantly being further developed. We reserve the right to revise and change procedures and documentation at any time and without prior notice. No claims for changes can be made from the information, illustrations and descriptions in this information. # 1.4.2 General notes on marking #### **Designation** A Beckhoff EtherCAT device has a 14-digit designation, made up of - · family key - · type - · version - · revision | Example | Family | Туре | Version | Revision | |------------------|---|--|-----------------------------------|----------| | EL3314-0000-0016 | EL terminal
(12 mm, non-
pluggable connection
level) | 3314 (4-channel thermocouple terminal) | 0000 (basic type) | 0016 | | ES3602-0010-0017 | ES terminal
(12 mm, pluggable
connection level) | | 0010 (high-
precision version) | 0017 | | CU2008-0000-0000 | CU device | 2008 (8-port fast ethernet switch) | 0000 (basic type) | 0000 | #### **Notes** - The elements mentioned above result in the **technical designation**. EL3314-0000-0016 is used in the example below. - EL3314-0000 is the order identifier, in the case of "-0000" usually abbreviated to EL3314. "-0016" is the EtherCAT revision. - · The order identifier is made up of - family key (EL, EP, CU, ES, KL, CX, etc.) - type (3314) - version (-0000) - The **revision** -0016 shows the technical progress, such as the extension of features with regard to the EtherCAT communication, and is managed by Beckhoff. - In principle, a device with a higher revision can replace a device with a lower revision, unless specified otherwise, e.g. in the documentation. - Associated and synonymous with each revision there is usually a description (ESI, EtherCAT Slave Information) in the form of an XML file, which is available for download from the Beckhoff web site. From 2014/01 the revision is shown on the outside of the IP20 terminals, see Fig. "EL5021 EL terminal, standard IP20 IO device with batch number and revision ID (since 2014/01)". - The type, version and revision are read as decimal numbers, even if they are technically saved in hexadecimal. ### 1.4.3 Version identification of EL terminals The serial number/ data code for Beckhoff IO devices is usually the 8-digit number printed on the device or on a sticker. The serial number indicates the configuration in delivery state and therefore refers to a whole production batch, without distinguishing the individual modules of a batch. Structure of the serial number: KK YY FF HH KK - week of production (CW, calendar week) YY - year of production FF - firmware version HH - hardware version Example with serial number 12 06 3A 02: 12 - production week 12 06 - production year 2006 3A - firmware version 3A 02 - hardware version 02 Fig. 2: EL2872 with revision 0022 and serial number 01200815 # 1.4.4 Beckhoff Identification Code (BIC) The Beckhoff Identification Code (BIC) is increasingly being applied to Beckhoff products to uniquely identify the product. The BIC is represented as a Data Matrix Code (DMC, code scheme ECC200), the content is based on the ANSI standard MH10.8.2-2016. Fig. 3: BIC as data matrix code (DMC, code scheme ECC200) The BIC will be introduced step by step across all product groups. Depending on the product, it can be found in the following places: - · on the packaging unit - · directly on the product (if space suffices) - · on the packaging unit and the product The BIC is machine-readable and contains information that can also be used by the customer for handling and product management. Each piece of information can be uniquely identified using the so-called data identifier (ANSI MH10.8.2-2016). The data identifier is followed by a character string. Both together have a maximum length according to the table below. If the information is shorter, spaces are added to it. Following information is possible, positions 1 to 4 are always present, the other according to need of production: | | Type of information | Explanation | Data identifier | Number of digits incl. data identifier | Example | |---|---------------------------------------|---|-----------------|--|-------------------| | 1 | Beckhoff order number | Beckhoff order number | 1P | 8 | 1P072222 | | 2 | Beckhoff Traceability
Number (BTN) | Unique serial number, see note below | SBTN | 12 | SBTNk4p562d7 | | 3 | Article description | Beckhoff article
description, e.g.
EL1008 | 1K | 32 | 1KEL1809 | | 4 | Quantity | Quantity in packaging unit, e.g. 1, 10, etc. | Q | 6 | Q1 | | 5 | Batch number | Optional: Year and week of production | 2P | 14 | 2P401503180016 | | 6 | ID/serial number | Optional: Present-day serial number system, e.g. with safety products | 51S | 12 | 51S 678294 | | 7 | Variant number | Optional: Product variant number on the basis of standard products | 30P | 32 | 30PF971, 2*K183 | | | | | | | | Further types of information and data identifiers are used by Beckhoff and serve internal processes. #### **Structure of the BIC** Example of composite information from positions 1 to 4 and with the above given example value on position 6. The data identifiers are highlighted in bold font: 1P072222SBTNk4p562d71KEL1809 Q1 51S678294 Accordingly as DMC: Fig. 4: Example DMC 1P072222SBTNk4p562d71KEL1809 Q1 51S678294 #### **BTN** An important component of the BIC is the Beckhoff Traceability Number (BTN, position 2). The BTN is a unique serial number consisting of eight characters that will replace all other serial number systems at Beckhoff in the long term (e.g. batch designations on IO components, previous serial number range for safety products, etc.). The BTN will also be introduced step by step, so it may happen that the BTN is not yet coded in the BIC. #### NOTE This information has been carefully prepared. However, the procedure described is constantly being further developed. We reserve the right to revise and change procedures and documentation at any time and without prior notice. No claims for changes can be made from the information, illustrations and descriptions in this information. # 1.4.5 Electronic access to the BIC (eBIC) #### **Electronic BIC (eBIC)** The Beckhoff Identification Code (BIC) is applied to the outside of Beckhoff products in a visible place. If possible, it should also be electronically readable. Decisive for the electronic readout is the interface via which the product can be electronically addressed. #### K-bus devices (IP20, IP67) Currently, no electronic storage and readout is planned for these devices. #### EtherCAT devices (IP20, IP67) All Beckhoff EtherCAT devices have a so-called ESI-EEPROM, which contains the EtherCAT identity with the revision number. Stored in it is the EtherCAT slave information, also colloquially known as ESI/XML configuration file for the EtherCAT master. See the corresponding chapter in the EtherCAT system manual (Link) for the relationships. The eBIC is also stored in the ESI-EEPROM. The eBIC was introduced into the Beckhoff I/O production (terminals, boxes) from 2020; widespread implementation is expected in 2021. The user can electronically access the eBIC (if existent) as follows: - With all EtherCAT devices, the EtherCAT master (TwinCAT) can read the eBIC from the ESI-EEPROM - From TwinCAT 3.1 build 4024.11, the eBIC can be displayed in the online view. - To do this, check the checkbox "Show Beckhoff Identification Code (BIC)" under EtherCAT → Advanced Settings → Diagnostics: The BTN and its contents are then displayed: - Note: as can be seen in the illustration, the production data HW version, FW version and production date, which have been programmed since 2012, can also be displayed with "Show Production Info". - From TwinCAT 3.1. build 4024.24 the functions *FB_EcReadBIC* and *FB_EcReadBTN* for reading into the PLC and further eBIC auxiliary functions are available in the Tc2_EtherCAT Library from v3.3.19.0. - In the case of EtherCAT devices with CoE directory, the object 0x10E2:01 can additionally by used to display the device's own eBIC; the PLC can also simply access the information here: The device must be in SAFEOP/OP for access: | Ind | ex | Name | Flags | Value | | | |-----|---------|--|-------|-------------------------------|----|----------------| | | 1000 | Device type | RO | 0x015E1389 (22942601) | | | | | 1008 | Device name | RO | ELM3704-0000 | | | | | 1009 | Hardware version | RO | 00 | | | | | 100A | Software version | RO | 01 | | | | | 100B | Bootloader version | RO | J0.1.27.0 | | | | • | 1011:0 | Restore default parameters | RO | >1< | | | | | 1018:0 | Identity | RO | >4< | | | | 8 | 10E2:0 | Manufacturer-specific Identification C | RO | >1< | | | | | 10E2:01 | SubIndex 001 | RO | 1P158442SBTN0008jekp1KELM3704 | Q1 | 2P482001000016 | | • | 10F0:0 | Backup parameter handling | RO | >1< | | | | + | 10F3:0 | Diagnosis History | RO | > 21 < | | | | | 10F8 | Actual Time Stamp | RO | 0x170bfb277e | | | - the object 0x10E2 will be introduced
into stock products in the course of a necessary firmware revision. - From TwinCAT 3.1. build 4024.24 the functions FB_EcCoEReadBIC and FB_EcCoEReadBTN for reading into the PLC and further eBIC auxiliary functions are available in the Tc2_EtherCAT Library from v3.3.19.0. - Note: in the case of electronic further processing, the BTN is to be handled as a string(8); the identifier "SBTN" is not part of the BTN. - · Technical background The new BIC information is additionally written as a category in the ESI-EEPROM during the device production. The structure of the ESI content is largely dictated by the ETG specifications, therefore the additional vendor-specific content is stored with the help of a category according to ETG.2010. ID 03 indicates to all EtherCAT masters that they must not overwrite these data in case of an update or restore the data after an ESI update. The structure follows the content of the BIC, see there. This results in a memory requirement of approx. 50..200 bytes in the EEPROM. - · Special cases - If multiple, hierarchically arranged ESCs are installed in a device, only the top-level ESC carries the eBIC Information. - If multiple, non-hierarchically arranged ESCs are installed in a device, all ESCs carry the eBIC Information. - If the device consists of several sub-devices with their own identity, but only the top-level device is accessible via EtherCAT, the eBIC of the top-level device is located in the CoE object directory 0x10E2:01 and the eBICs of the sub-devices follow in 0x10E2:nn. #### Profibus/Profinet/DeviceNet... Devices Currently, no electronic storage and readout is planned for these devices. # 2 Product description # 2.1 License key terminal for TwinCAT 3.1 Fig. 5: *EL6070* From version 3.1 TwinCAT offers an option to manage licenses via a hardware dongle. The EL6070 EtherCAT Terminal represents such a hardware license key within the modular EtherCAT I/O system. Data transfer takes place via EtherCAT. The EL6070-0000 is the general version, which the user can link with any licenses. The EL6070-xxxx are custom versions that are preprogrammed by Beckhoff with a defined, fixed set of linked licenses. They are available for bulk buyers. #### **Quick links** - EtherCAT basics [▶ 18] - <u>EL6070 basics</u> [▶ <u>45</u>] - EL6070 Technical data [▶ 17] - Object description and parameterization [▶ 59] - C9900-L100 License-Key-USB-Stick for TwinCAT 3.1 # 2.2 EL6070 - Technical data | Technical data | EL6070 | |--|--| | Technology | EtherCAT License Key Terminal | | Distributed Clocks | - | | Voltage supply for electronics | via the E-Bus | | Current consumption E-bus | typ. 120 mA | | Local memory | 1 MByte | | Electrical isolation | 500 V (E-Bus/field voltage) | | Configuration | via TwinCAT System Manager | | Weight | approx. 50 g | | Permissible ambient temperature range during operation | -25°C +60°C | | Permissible ambient temperature range during storage | -40°C + 85°C | | Relative humidity | 95%, no condensation | | Dimensions (WxHxD) | approx. 12 mm x 100 mm x 70 mm | | Mounting [▶ 35] | on 35 mm mounting rail conforms to EN 60715 | | Increased mechanical load capacity | yes, see also installation instructions for terminals with increased | | | mechanical load capacity [> 38] | | Vibration/shock resistance | conforms to EN 60068-2-6/EN 60068-2-27 | | EMC resistance burst/ESD | conforms to EN 61000-6-2/EN 61000-6-4 | | Protect. class | IP20 | | Installation pos. | variable | | Marking / Approval*) | CE, EAC, UKCA | | | ATEX [▶ 29], IECEx [▶ 30], cFMus [▶ 32], cULus [▶ 34] | ^{*)} Real applicable approvals/markings see type plate on the side (product marking). # Ex markings | Standard | Marking | |----------|--| | ATEX | II 3 G Ex nA IIC T4 Gc
II 3 D Ex tc IIIC T135 °C Dc | | IECEx | Ex nA IIC T4 Gc
Ex tc IIIC T135 °C Dc | | cFMus | Class I, Division 2, Groups A, B, C, D
Class I, Zone 2, AEx/Ex ec IIC T4 Gc | # 3 Basics communication #### 3.1 EtherCAT basics Please refer to the EtherCAT System Documentation for the EtherCAT fieldbus basics. # 3.2 EtherCAT cabling – wire-bound The cable length between two EtherCAT devices must not exceed 100 m. This results from the FastEthernet technology, which, above all for reasons of signal attenuation over the length of the cable, allows a maximum link length of 5 + 90 + 5 m if cables with appropriate properties are used. See also the <u>Design</u> recommendations for the infrastructure for EtherCAT/Ethernet. #### **Cables and connectors** For connecting EtherCAT devices only Ethernet connections (cables + plugs) that meet the requirements of at least category 5 (CAt5) according to EN 50173 or ISO/IEC 11801 should be used. EtherCAT uses 4 wires for signal transfer. EtherCAT uses RJ45 plug connectors, for example. The pin assignment is compatible with the Ethernet standard (ISO/IEC 8802-3). | Pin | Color of conductor | Signal | Description | |-----|--------------------|--------|---------------------| | 1 | yellow | TD + | Transmission Data + | | 2 | orange | TD - | Transmission Data - | | 3 | white | RD + | Receiver Data + | | 6 | blue | RD - | Receiver Data - | Due to automatic cable detection (auto-crossing) symmetric (1:1) or cross-over cables can be used between EtherCAT devices from Beckhoff. #### Recommended cables It is recommended to use the appropriate Beckhoff components e.g. - cable sets ZK1090-9191-xxxx respectively - RJ45 connector, field assembly ZS1090-0005 - EtherCAT cable, field assembly ZB9010, ZB9020 Suitable cables for the connection of EtherCAT devices can be found on the Beckhoff website! #### **E-Bus supply** A bus coupler can supply the EL terminals added to it with the E-bus system voltage of 5 V; a coupler is thereby loadable up to 2 A as a rule (see details in respective device documentation). Information on how much current each EL terminal requires from the E-bus supply is available online and in the catalogue. If the added terminals require more current than the coupler can supply, then power feed terminals (e.g. EL9410) must be inserted at appropriate places in the terminal strand. The pre-calculated theoretical maximum E-Bus current is displayed in the TwinCAT System Manager. A shortfall is marked by a negative total amount and an exclamation mark; a power feed terminal is to be placed before such a position. Fig. 6: System manager current calculation #### NOTE #### Malfunction possible! The same ground potential must be used for the E-Bus supply of all EtherCAT terminals in a terminal block! # 3.3 General notes for setting the watchdog ELxxxx terminals are equipped with a safety feature (watchdog) that switches off the outputs after a specifiable time e.g. in the event of an interruption of the process data traffic, depending on the device and settings, e.g. in OFF state. The EtherCAT slave controller (ESC) features two watchdogs: SM watchdog (default: 100 ms)PDI watchdog (default: 100 ms) #### SM watchdog (SyncManager Watchdog) The SyncManager watchdog is reset after each successful EtherCAT process data communication with the terminal. If no EtherCAT process data communication takes place with the terminal for longer than the set and activated SM watchdog time, e.g. in the event of a line interruption, the watchdog is triggered and the outputs are set to FALSE. The OP state of the terminal is unaffected. The watchdog is only reset after a successful EtherCAT process data access. Set the monitoring time as described below. The SyncManager watchdog monitors correct and timely process data communication with the ESC from the EtherCAT side. #### PDI watchdog (Process Data Watchdog) If no PDI communication with the EtherCAT slave controller (ESC) takes place for longer than the set and activated PDI watchdog time, this watchdog is triggered. PDI (Process Data Interface) is the internal interface between the ESC and local processors in the EtherCAT slave, for example. The PDI watchdog can be used to monitor this communication for failure. The PDI watchdog monitors correct and timely process data communication with the ESC from the application side. The settings of the SM- and PDI-watchdog must be done for each slave separately in the TwinCAT System Manager. Fig. 7: EtherCAT tab -> Advanced Settings -> Behavior -> Watchdog #### Notes: - · the multiplier is valid for both watchdogs. - each watchdog has its own timer setting, the outcome of this in summary with the multiplier is a resulting time. - Important: the multiplier/timer setting is only loaded into the slave at the start up, if the checkbox is activated. - If the checkbox is not activated, nothing is downloaded and the ESC settings remain unchanged. #### Multiplier Both watchdogs receive their pulses from the local terminal cycle, divided by the watchdog multiplier: 1/25 MHz * (watchdog multiplier + 2) = 100 µs (for default setting of 2498 for the multiplier) The standard setting of 1000 for the SM watchdog corresponds to a release time of 100 ms. The value in multiplier + 2 corresponds to the number of basic 40 ns ticks representing a watchdog tick. The multiplier can be modified in order to adjust the watchdog time over a larger range. #### Example "Set SM watchdog" This checkbox enables manual setting of the watchdog times. If the outputs are set and the EtherCAT communication is interrupted, the SM watchdog is triggered after the set time and the outputs are erased. This setting can be used for adapting a terminal to a slower EtherCAT master or long cycle times. The default SM watchdog setting is 100 ms. The setting range is 0...65535. Together with a multiplier with a range of 1...65535 this covers a watchdog period between 0...~170 seconds. #### **Calculation** Multiplier = $2498 \rightarrow$ watchdog base time = 1 / 25 MHz * (2498 + 2) =
0.0001 seconds = 100 μ s SM watchdog = $10000 \rightarrow 10000 * 100 \mu$ s = 1 second watchdog monitoring time #### **⚠ CAUTION** #### Undefined state possible! The function for switching off of the SM watchdog via SM watchdog = 0 is only implemented in terminals from version -0016. In previous versions this operating mode should not be used. #### **A CAUTION** #### Damage of devices and undefined state possible! If the SM watchdog is activated and a value of 0 is entered the watchdog switches off completely. This is the deactivation of the watchdog! Set outputs are NOT set in a safe state, if the communication is interrupted. ## 3.4 EtherCAT State Machine The state of the EtherCAT slave is controlled via the EtherCAT State Machine (ESM). Depending upon the state, different functions are accessible or executable in the EtherCAT slave. Specific commands must be sent by the EtherCAT master to the device in each state, particularly during the bootup of the slave. A distinction is made between the following states: - Init - · Pre-Operational - · Safe-Operational and - Operational - Boot The regular state of each EtherCAT slave after bootup is the OP state. Fig. 8: States of the EtherCAT State Machine #### Init After switch-on the EtherCAT slave in the *Init* state. No mailbox or process data communication is possible. The EtherCAT master initializes sync manager channels 0 and 1 for mailbox communication. #### **Pre-Operational (Pre-Op)** During the transition between *Init* and *Pre-Op* the EtherCAT slave checks whether the mailbox was initialized correctly. In *Pre-Op* state mailbox communication is possible, but not process data communication. The EtherCAT master initializes the sync manager channels for process data (from sync manager channel 2), the FMMU channels and, if the slave supports configurable mapping, PDO mapping or the sync manager PDO assignment. In this state the settings for the process data transfer and perhaps terminal-specific parameters that may differ from the default settings are also transferred. #### **Safe-Operational (Safe-Op)** During transition between *Pre-Op* and *Safe-Op* the EtherCAT slave checks whether the sync manager channels for process data communication and, if required, the distributed clocks settings are correct. Before it acknowledges the change of state, the EtherCAT slave copies current input data into the associated DP-RAM areas of the EtherCAT slave controller (ECSC). In *Safe-Op* state mailbox and process data communication is possible, although the slave keeps its outputs in a safe state, while the input data are updated cyclically. #### **Outputs in SAFEOP state** The default set watchdog [> 19] monitoring sets the outputs of the module in a safe state - depending on the settings in SAFEOP and OP - e.g. in OFF state. If this is prevented by deactivation of the watchdog monitoring in the module, the outputs can be switched or set also in the SAFEOP state. #### Operational (Op) Before the EtherCAT master switches the EtherCAT slave from *Safe-Op* to *Op* it must transfer valid output data In the *Op* state the slave copies the output data of the masters to its outputs. Process data and mailbox communication is possible. #### **Boot** In the *Boot* state the slave firmware can be updated. The *Boot* state can only be reached via the *Init* state. In the *Boot* state mailbox communication via the *file access over EtherCAT* (FoE) protocol is possible, but no other mailbox communication and no process data communication. # 3.5 CoE Interface #### **General description** The CoE interface (CAN application protocol over EtherCAT)) is used for parameter management of EtherCAT devices. EtherCAT slaves or the EtherCAT master manage fixed (read only) or variable parameters which they require for operation, diagnostics or commissioning. CoE parameters are arranged in a table hierarchy. In principle, the user has read access via the fieldbus. The EtherCAT master (TwinCAT System Manager) can access the local CoE lists of the slaves via EtherCAT in read or write mode, depending on the attributes. Different CoE parameter types are possible, including string (text), integer numbers, Boolean values or larger byte fields. They can be used to describe a wide range of features. Examples of such parameters include manufacturer ID, serial number, process data settings, device name, calibration values for analog measurement or passwords. The order is specified in two levels via hexadecimal numbering: (main)index, followed by subindex. The value ranges are - Index: 0x0000 ...0xFFFF (0...65535_{dec}) - SubIndex: 0x00...0xFF (0...255_{dec}) A parameter localized in this way is normally written as 0x8010:07, with preceding "0x" to identify the hexadecimal numerical range and a colon between index and subindex. The relevant ranges for EtherCAT fieldbus users are: - 0x1000: This is where fixed identity information for the device is stored, including name, manufacturer, serial number etc., plus information about the current and available process data configurations. - 0x8000: This is where the operational and functional parameters for all channels are stored, such as filter settings or output frequency. Other important ranges are: - 0x4000: here are the channel parameters for some EtherCAT devices. Historically, this was the first parameter area before the 0x8000 area was introduced. EtherCAT devices that were previously equipped with parameters in 0x4000 and changed to 0x8000 support both ranges for compatibility reasons and mirror internally. - 0x6000: Input PDOs ("input" from the perspective of the EtherCAT master) - 0x7000: Output PDOs ("output" from the perspective of the EtherCAT master) #### Availability Not every EtherCAT device must have a CoE list. Simple I/O modules without dedicated processor usually have no variable parameters and therefore no CoE list. If a device has a CoE list, it is shown in the TwinCAT System Manager as a separate tab with a listing of the elements: Fig. 9: "CoE Online" tab The figure above shows the CoE objects available in device "EL2502", ranging from 0x1000 to 0x1600. The subindices for 0x1018 are expanded. #### Data management and function "NoCoeStorage" Some parameters, particularly the setting parameters of the slave, are configurable and writeable. This can be done in write or read mode - via the System Manager (Fig. "CoE Online" tab) by clicking This is useful for commissioning of the system/slaves. Click on the row of the index to be parameterized and enter a value in the "SetValue" dialog. - from the control system/PLC via ADS, e.g. through blocks from the TcEtherCAT.lib library This is recommended for modifications while the system is running or if no System Manager or operating staff are available. #### Data management If slave CoE parameters are modified online, Beckhoff devices store any changes in a fail-safe manner in the EEPROM, i.e. the modified CoE parameters are still available after a restart. The situation may be different with other manufacturers. An EEPROM is subject to a limited lifetime with respect to write operations. From typically 100,000 write operations onwards it can no longer be guaranteed that new (changed) data are reliably saved or are still readable. This is irrelevant for normal commissioning. However, if CoE parameters are continuously changed via ADS at machine runtime, it is quite possible for the lifetime limit to be reached. Support for the NoCoeStorage function, which suppresses the saving of changed CoE values, depends on the firmware version. Please refer to the technical data in this documentation as to whether this applies to the respective device. - If the function is supported: the function is activated by entering the code word 0x12345678 once in CoE 0xF008 and remains active as long as the code word is not changed. After switching the device on it is then inactive. Changed CoE values are not saved in the EEPROM and can thus be changed any number of times. - Function is not supported: continuous changing of CoE values is not permissible in view of the lifetime limit. #### Startup list Changes in the local CoE list of the terminal are lost if the terminal is replaced. If a terminal is replaced with a new Beckhoff terminal, it will have the default settings. It is therefore advisable to link all changes in the CoE list of an EtherCAT slave with the Startup list of the slave, which is processed whenever the EtherCAT fieldbus is started. In this way a replacement EtherCAT slave can automatically be parameterized with the specifications of the user. If EtherCAT slaves are used which are unable to store local CoE values permanently, the Startup list must be used. #### Recommended approach for manual modification of CoE parameters - Make the required change in the System Manager The values are stored locally in the EtherCAT slave - If the value is to be stored permanently, enter it in the Startup list. The order of the Startup entries is usually irrelevant. Fig. 10: Startup list in the TwinCAT System Manager The Startup list may already contain values that were configured by the System Manager based on the ESI specifications. Additional application-specific entries can be created. #### Online/offline list While working with the TwinCAT System Manager, a distinction has to be made whether the EtherCAT device is "available", i.e. switched on and linked via EtherCAT and therefore **online**, or whether a configuration is created **offline** without connected slaves. In both cases a CoE list as shown in Fig. "CoE online tab" is displayed. The connectivity is shown as offline/online. - If the slave is offline - The offline list from the ESI file is displayed. In this case modifications are not meaningful or possible. - · The configured status is shown under Identity. - · No firmware or hardware version is displayed, since these are features of the physical device. - Offline is shown in red. Fig. 11: Offline list
- · If the slave is online - The actual current slave list is read. This may take several seconds, depending on the size and cycle time. - · The actual identity is displayed - The firmware and hardware version of the equipment according to the electronic information is displayed - · Online is shown in green. Fig. 12: Online list #### **Channel-based order** The CoE list is available in EtherCAT devices that usually feature several functionally equivalent channels. For example, a 4-channel analog 0...10 V input terminal also has four logical channels and therefore four identical sets of parameter data for the channels. In order to avoid having to list each channel in the documentation, the placeholder "n" tends to be used for the individual channel numbers. In the CoE system 16 indices, each with 255 subindices, are generally sufficient for representing all channel parameters. The channel-based order is therefore arranged in $16_{dec}/10_{hex}$ steps. The parameter range 0x8000 exemplifies this: - Channel 0: parameter range 0x8000:00 ... 0x800F:255 - Channel 1: parameter range 0x8010:00 ... 0x801F:255 - Channel 2: parameter range 0x8020:00 ... 0x802F:255 - ... This is generally written as 0x80n0. Detailed information on the CoE interface can be found in the <u>EtherCAT system documentation</u> on the Beckhoff website. # 3.6 Distributed Clock The distributed clock represents a local clock in the EtherCAT slave controller (ESC) with the following characteristics: - Unit 1 ns - Zero point 1.1.2000 00:00 - Size *64 bit* (sufficient for the next 584 years; however, some EtherCAT slaves only offer 32-bit support, i.e. the variable overflows after approx. 4.2 seconds) - The EtherCAT master automatically synchronizes the local clock with the master clock in the EtherCAT bus with a precision of < 100 ns. For detailed information please refer to the EtherCAT system description. # 4 Installation # 4.1 Instructions for ESD protection #### NOTE #### Destruction of the devices by electrostatic discharge possible! The devices contain components at risk from electrostatic discharge caused by improper handling. - · Please ensure you are electrostatically discharged and avoid touching the contacts of the device directly. - Avoid contact with highly insulating materials (synthetic fibers, plastic film etc.). - Surroundings (working place, packaging and personnel) should by grounded probably, when handling with the devices. - Each assembly must be terminated at the right hand end with an <u>EL9011</u> or <u>EL9012</u> bus end cap, to ensure the protection class and ESD protection. Fig. 13: Spring contacts of the Beckhoff I/O components # 4.2 Explosion protection # 4.2.1 ATEX - Special conditions (extended temperature range) #### **⚠ WARNING** Observe the special conditions for the intended use of Beckhoff fieldbus components with extended temperature range (ET) in potentially explosive areas (directive 2014/34/EU)! - The certified components are to be installed in a suitable housing that guarantees a protection class of at least IP54 in accordance with EN 60079-15! The environmental conditions during use are thereby to be taken into account! - For dust (only the fieldbus components of certificate no. KEMA 10ATEX0075 X Issue 9): The equipment shall be installed in a suitable enclosure providing a degree of protection of IP54 according to EN 60079-31 for group IIIA or IIIB and IP6X for group IIIC, taking into account the environmental conditions under which the equipment is used! - If the temperatures during rated operation are higher than 70°C at the feed-in points of cables, lines or pipes, or higher than 80°C at the wire branching points, then cables must be selected whose temperature data correspond to the actual measured temperature values! - Observe the permissible ambient temperature range of -25 to 60°C for the use of Beckhoff fieldbus components with extended temperature range (ET) in potentially explosive areas! - Measures must be taken to protect against the rated operating voltage being exceeded by more than 40% due to short-term interference voltages! - The individual terminals may only be unplugged or removed from the Bus Terminal system if the supply voltage has been switched off or if a non-explosive atmosphere is ensured! - The connections of the certified components may only be connected or disconnected if the supply voltage has been switched off or if a non-explosive atmosphere is ensured! - The fuses of the KL92xx/EL92xx power feed terminals may only be exchanged if the supply voltage has been switched off or if a non-explosive atmosphere is ensured! - Address selectors and ID switches may only be adjusted if the supply voltage has been switched off or if a non-explosive atmosphere is ensured! #### **Standards** The fundamental health and safety requirements are fulfilled by compliance with the following standards: - EN 60079-0:2012+A11:2013 - EN 60079-15:2010 - EN 60079-31:2013 (only for certificate no. KEMA 10ATEX0075 X Issue 9) #### Marking The Beckhoff fieldbus components with extended temperature range (ET) certified according to the ATEX directive for potentially explosive areas bear the following marking: II 3G KEMA 10ATEX0075 X Ex nA IIC T4 Gc Ta: -25 ... +60°C II 3D KEMA 10ATEX0075 X Ex tc IIIC T135°C Dc Ta: -25 ... +60°C (only for fieldbus components of certificate no. KEMA 10ATEX0075 X Issue 9) or II 3G KEMA 10ATEX0075 X Ex nA nC IIC T4 Gc Ta: -25 ... +60°C II 3D KEMA 10ATEX0075 X Ex tc IIIC T135°C Dc Ta: -25 ... +60°C (only for fieldbus components of certificate no. KEMA 10ATEX0075 X Issue 9) # 4.2.2 IECEx - Special conditions #### **⚠ WARNING** Observe the special conditions for the intended use of Beckhoff fieldbus components in potentially explosive areas! - For gas: The equipment shall be installed in a suitable enclosure providing a degree of protection of IP54 according to IEC 60079-15, taking into account the environmental conditions under which the equipment is used! - For dust (only the fieldbus components of certificate no. IECEx DEK 16.0078X Issue 3): The equipment shall be installed in a suitable enclosure providing a degree of protection of IP54 according to EN 60079-31 for group IIIA or IIIB and IP6X for group IIIC, taking into account the environmental conditions under which the equipment is used! - The equipment shall only be used in an area of at least pollution degree 2, as defined in IEC 60664-1! - Provisions shall be made to prevent the rated voltage from being exceeded by transient disturbances of more than 119 V! - If the temperatures during rated operation are higher than 70°C at the feed-in points of cables, lines or pipes, or higher than 80°C at the wire branching points, then cables must be selected whose temperature data correspond to the actual measured temperature values! - Observe the permissible ambient temperature range for the use of Beckhoff fieldbus components in potentially explosive areas! - The individual terminals may only be unplugged or removed from the Bus Terminal system if the supply voltage has been switched off or if a non-explosive atmosphere is ensured! - The connections of the certified components may only be connected or disconnected if the supply voltage has been switched off or if a non-explosive atmosphere is ensured! - Address selectors and ID switches may only be adjusted if the supply voltage has been switched off or if a non-explosive atmosphere is ensured! - The front hatch of certified units may only be opened if the supply voltage has been switched off or a non-explosive atmosphere is ensured! #### **Standards** The fundamental health and safety requirements are fulfilled by compliance with the following standards: - EN 60079-0:2011 - EN 60079-15:2010 - EN 60079-31:2013 (only for certificate no. IECEx DEK 16.0078X Issue 3) #### Marking Beckhoff fieldbus components that are certified in accordance with IECEx for use in areas subject to an explosion hazard bear the following markings: Marking for fieldbus components of certificate no. IECEx DEK 16.0078X Issue 3: IECEX DEK 16.0078 X Ex nA IIC T4 Gc Ex tc IIIC T135°C Dc Marking for fieldbus components of certficates with later issues: **IECEx DEK 16.0078 X** Ex nA IIC T4 Gc # 4.2.3 Continuative documentation for ATEX and IECEx ### NOTE # Continuative documentation about explosion protection according to ATEX and IECEx Pay also attention to the continuative documentation #### **Ex. Protection for Terminal Systems** Notes on the use of the Beckhoff terminal systems in hazardous areas according to ATEX and IECEx, that is available for <u>download</u> within the download area of your product on the Beckhoff homepage www.beckhoff.com! # 4.2.4 cFMus - Special conditions #### **⚠ WARNING** Observe the special conditions for the intended use of Beckhoff fieldbus components in potentially explosive areas! - The equipment shall be installed within an enclosure that provides a minimum ingress protection of IP54 in accordance with ANSI/UL 60079-0 (US) or CSA C22.2 No. 60079-0 (Canada). - The equipment shall only be used in an area of at least pollution degree 2, as defined in IEC 60664-1. - Transient protection shall be provided that is set at a level not exceeding 140% of the peak rated voltage value at the supply terminals to the equipment. - The circuits shall be limited to overvoltage Category II as defined in IEC 60664-1. - The Fieldbus Components may only be removed or inserted when the system supply and the field supply are switched off, or when the location is known to be non-hazardous. - The Fieldbus Components may only be disconnected or connected when the system supply is switched off, or when the location is known to be non-hazardous. #### **Standards** The fundamental health and safety requirements are fulfilled by compliance with the following standards: #### M20US0111X (US): - FM Class 3600:2018 - FM Class 3611:2018 - FM Class 3810:2018 - ANSI/UL
121201:2019 - ANSI/ISA 61010-1:2012 - ANSI/UL 60079-0:2020 - ANSI/UL 60079-7:2017 #### FM20CA0053X (Canada): - CAN/CSA C22.2 No. 213-17:2017 - CSA C22.2 No. 60079-0:2019 - CAN/CSA C22.2 No. 60079-7:2016 - CAN/CSA C22.2 No.61010-1:2012 #### Marking Beckhoff fieldbus components that are certified in accordance with cFMus for use in areas subject to an explosion hazard bear the following markings: FM20US0111X (US): Class I, Division 2, Groups A, B, C, D Class I, Zone 2, AEx ec IIC T4 Gc FM20CA0053X (Canada): Class I, Division 2, Groups A, B, C, D Ex ec T4 Gc # 4.2.5 Continuative documentation for cFMus # NOTE Continuative documentation about explosion protection according to cFMus Pay also attention to the continuative documentation ### Control Drawing I/O, CX, CPX Connection diagrams and Ex markings, that is available for <u>download</u> within the download area of your product on the Beckhoff homepage www.beckhoff.com! # 4.3 UL notice #### **A CAUTION** ### **Application** Beckhoff EtherCAT modules are intended for use with Beckhoff's UL Listed EtherCAT System only. #### **⚠ CAUTION** #### **Examination** For cULus examination, the Beckhoff I/O System has only been investigated for risk of fire and electrical shock (in accordance with UL508 and CSA C22.2 No. 142). #### **A CAUTION** #### For devices with Ethernet connectors Not for connection to telecommunication circuits. ### **Basic principles** UL certification according to UL508. Devices with this kind of certification are marked by this sign: # 4.4 Installation on mounting rails #### **⚠ WARNING** #### Risk of electric shock and damage of device! Bring the bus terminal system into a safe, powered down state before starting installation, disassembly or wiring of the bus terminals! #### **Assembly** Fig. 14: Attaching on mounting rail The bus coupler and bus terminals are attached to commercially available 35 mm mounting rails (DIN rails according to EN 60715) by applying slight pressure: - 1. First attach the fieldbus coupler to the mounting rail. - 2. The bus terminals are now attached on the right-hand side of the fieldbus coupler. Join the components with tongue and groove and push the terminals against the mounting rail, until the lock clicks onto the mounting rail. If the terminals are clipped onto the mounting rail first and then pushed together without tongue and groove, the connection will not be operational! When correctly assembled, no significant gap should be visible between the housings. #### Fixing of mounting rails The locking mechanism of the terminals and couplers extends to the profile of the mounting rail. At the installation, the locking mechanism of the components must not come into conflict with the fixing bolts of the mounting rail. To mount the mounting rails with a height of 7.5 mm under the terminals and couplers, you should use flat mounting connections (e.g. countersunk screws or blind rivets). #### Disassembly Fig. 15: Disassembling of terminal Each terminal is secured by a lock on the mounting rail, which must be released for disassembly: - 1. Pull the terminal by its orange-colored lugs approximately 1 cm away from the mounting rail. In doing so for this terminal the mounting rail lock is released automatically and you can pull the terminal out of the bus terminal block easily without excessive force. - 2. Grasp the released terminal with thumb and index finger simultaneous at the upper and lower grooved housing surfaces and pull the terminal out of the bus terminal block. #### Connections within a bus terminal block The electric connections between the Bus Coupler and the Bus Terminals are automatically realized by joining the components: - The six spring contacts of the K-Bus/E-Bus deal with the transfer of the data and the supply of the Bus Terminal electronics. - The power contacts deal with the supply for the field electronics and thus represent a supply rail within the bus terminal block. The power contacts are supplied via terminals on the Bus Coupler (up to 24 V) or for higher voltages via power feed terminals. #### Power Contacts During the design of a bus terminal block, the pin assignment of the individual Bus Terminals must be taken account of, since some types (e.g. analog Bus Terminals or digital 4-channel Bus Terminals) do not or not fully loop through the power contacts. Power Feed Terminals (KL91xx, KL92xx or EL91xx, EL92xx) interrupt the power contacts and thus represent the start of a new supply rail. #### PE power contact The power contact labeled PE can be used as a protective earth. For safety reasons this contact mates first when plugging together, and can ground short-circuit currents of up to 125 A. Fig. 16: Power contact on left side #### NOTE #### Possible damage of the device Note that, for reasons of electromagnetic compatibility, the PE contacts are capacitatively coupled to the mounting rail. This may lead to incorrect results during insulation testing or to damage on the terminal (e.g. disruptive discharge to the PE line during insulation testing of a consumer with a nominal voltage of 230 V). For insulation testing, disconnect the PE supply line at the Bus Coupler or the Power Feed Terminal! In order to decouple further feed points for testing, these Power Feed Terminals can be released and pulled at least 10 mm from the group of terminals. #### **⚠ WARNING** #### Risk of electric shock! The PE power contact must not be used for other potentials! # 4.5 Installation instructions for enhanced mechanical load capacity #### **⚠ WARNING** #### Risk of injury through electric shock and damage to the device! Bring the Bus Terminal system into a safe, de-energized state before starting mounting, disassembly or wiring of the Bus Terminals! #### **Additional checks** The terminals have undergone the following additional tests: | Verification | Explanation | |--------------|---| | Vibration | 10 frequency runs in 3 axes | | | 6 Hz < f < 60 Hz displacement 0.35 mm, constant amplitude | | | 60.1 Hz < f < 500 Hz acceleration 5 g, constant amplitude | | Shocks | 1000 shocks in each direction, in 3 axes | | | 25 g, 6 ms | #### Additional installation instructions For terminals with enhanced mechanical load capacity, the following additional installation instructions apply: - · The enhanced mechanical load capacity is valid for all permissible installation positions - Use a mounting rail according to EN 60715 TH35-15 - Fix the terminal segment on both sides of the mounting rail with a mechanical fixture, e.g. an earth terminal or reinforced end clamp - The maximum total extension of the terminal segment (without coupler) is: 64 terminals (12 mm mounting with) or 32 terminals (24 mm mounting with) - Avoid deformation, twisting, crushing and bending of the mounting rail during edging and installation of the rail - The mounting points of the mounting rail must be set at 5 cm intervals - · Use countersunk head screws to fasten the mounting rail - The free length between the strain relief and the wire connection should be kept as short as possible. A distance of approx. 10 cm should be maintained to the cable duct. ### 4.6 Installation positions #### NOTE #### Constraints regarding installation position and operating temperature range Please refer to the technical data for a terminal to ascertain whether any restrictions regarding the installation position and/or the operating temperature range have been specified. When installing high power dissipation terminals ensure that an adequate spacing is maintained between other components above and below the terminal in order to guarantee adequate ventilation! #### **Optimum installation position (standard)** The optimum installation position requires the mounting rail to be installed horizontally and the connection surfaces of the EL/KL terminals to face forward (see Fig. *Recommended distances for standard installation position*). The terminals are ventilated from below, which enables optimum cooling of the electronics through convection. "From below" is relative to the acceleration of gravity. Fig. 17: Recommended distances for standard installation position Compliance with the distances shown in Fig. *Recommended distances for standard installation position* is recommended. #### Other installation positions All other installation positions are characterized by different spatial arrangement of the mounting rail - see Fig *Other installation positions*. The minimum distances to ambient specified above also apply to these installation positions. Fig. 18: Other installation positions ### 4.7 Positioning of passive Terminals #### Hint for positioning of passive terminals in the bus terminal block EtherCAT Terminals (ELxxxx / ESxxxx), which do not take an active part in data transfer within the bus terminal block are so called passive terminals. The passive terminals have no current consumption out of the E-Bus. To ensure an optimal data transfer, you must not directly string together more than two passive terminals! #### **Examples for positioning of passive terminals (highlighted)** Fig. 19: Correct positioning Fig. 20: Incorrect positioning ### 4.8 Note - Power supply #### **⚠ WARNING** #### Power supply from SELV/PELV power supply unit! SELV/PELV circuits (Safety Extra Low Voltage, Protective Extra Low Voltage) according to IEC 61010-2-201 must be used to supply this device. #### Notes: - SELV/PELV circuits may give rise to further requirements from standards such as IEC 60204-1 et al, for example with regard to cable spacing and insulation. - A SELV (Safety Extra Low Voltage) supply provides safe electrical isolation and limitation of the voltage without a connection to the protective conductor, a PELV (Protective Extra Low Voltage) supply also requires a safe connection to the protective conductor. ### 4.9 EL6070 - LEDs and connection #### **LEDs** Fig. 21: LEDs and pin assignment | LED | Color | Meaning | | |
 | |-----------------------|--------|-------------------|---|--|--|--| | RUN | green | This LED indica | This LED indicates the terminal's operating state: | | | | | | | off | INIT = Initialization of the terminal | | | | | | | blinking | PREOP = Setting for mailbox communication and variant standard settings | | | | | | | single flash | SAFEOP = Channel checking of the Sync Manager. Outputs stay in safe operation mode. | | | | | | | on | OP = Normal operation mode, mailbox- and process data communication possible | | | | | | | flickering | BOOTSTRAP = Function for firmware updates of the terminal | | | | | Processing LED | green | Cryptographic p | rocess is executed | | | | | Initialization
LED | yellow | The terminal init | erminal initialize its data and changes to a receiving state | | | | | Error LED | red | Error while cryp | tographic initialization phase or ongoing cryptographic | | | | #### Connection | Terminal point | No. | Comment | |----------------|-------|---------------| | - | 1 - 8 | Not connected | ### 4.10 Disposal Products marked with a crossed-out wheeled bin shall not be discarded with the normal waste stream. The device is considered as waste electrical and electronic equipment. The national regulations for the disposal of waste electrical and electronic equipment must be observed. ### 5 Commissioning ### 5.1 Basic function principles Basic function principles The TwinCAT dongle device (here: EL6070) is a special piece of hardware that can be read by TwinCAT 3. On the IPC the so-called License Response File contains the licenses that are valid for this system. If the License Response File also contains a check against a dongle, TwinCAT looks for the dongle and checks - whether it is a Beckhoff device - whether it is a specific Beckhoff device After successful checking the licenses are available according to the LicenseResponseFile. The EL6070 has no other user functions. From hardware version 02 the EL6070 also features a local memory, so that one or several LicenseResponseFiles can be stored and transported on the dongle. From FW05/Rev0019, the EL6070 has a non-erasable operating hours counter in CoE xF900:01 in the unit [sec] which counts when the Ebus voltage is applied. Fig. 22: Object F900:01, operating hours counter Fig. 23: TwinCAT dongle architecture Since the dongle technology is primarily a TwinCAT functionality, further information about the application can be found in the TwinCAT documentation at http://infosys.beckhoff.com/. Please note that, as an EtherCAT master, TwinCAT checks the complete terminal name during startup, i.e. EL6070-0000 or EL6070-1234 (as an example). A corresponding ESI must therefore exist in the TwinCAT system. #### **Firmware Update** The firmware on the EL6070 cannot be updated. The EtherCAT revision can be updated, if necessary. #### Vulnerability of security hardware The hardware used in the dongle ensures that, according to present knowledge, any attacks on the hardware-related checks would require very substantial financial and time effort. No cryptographic system can be made categorically secure against any conceivable attackers (e.g. state-sponsored attackers). Whether and how successful an attack against an encryption technology can be carried out always boils down to "just" a question of financial resources (processing power, laboratory equipment, staff, availability) and time resources. Another factor is human behavior, which is associated with the organizational procedures of the system and cannot be made secure through hardware and software ("social engineering"). Technological progress may open up future attack options that are unknown today and may require a reassessment of the cryptographic system. The cryptography chosen for the Beckhoff dongle is based on the present state of the art. #### 5.2 Notes regarding ESI device description #### Installation of the latest ESI device description The TwinCAT EtherCAT master/System Manager needs the device description files for the devices to be used in order to generate the configuration in online or offline mode. The device descriptions are contained in the so-called ESI files (EtherCAT Slave Information) in XML format. These files can be requested from the respective manufacturer and are made available for download. An *.xml file may contain several device descriptions. The ESI files for Beckhoff EtherCAT devices are available on the Beckhoff website. The ESI files should be stored in the TwinCAT installation directory. Default settings: - TwinCAT 2: C:\TwinCAT\IO\EtherCAT - TwinCAT 3: C:\TwinCAT\3.1\Config\lo\EtherCAT The files are read (once) when a new System Manager window is opened, if they have changed since the last time the System Manager window was opened. A TwinCAT installation includes the set of Beckhoff ESI files that was current at the time when the TwinCAT build was created. For TwinCAT 2.11/TwinCAT 3 and higher, the ESI directory can be updated from the System Manager, if the programming PC is connected to the Internet; by - TwinCAT 2: Option → "Update EtherCAT Device Descriptions" - TwinCAT 3: TwinCAT → EtherCAT Devices → "Update Device Descriptions (via ETG Website)..." The TwinCAT ESI Updater is available for this purpose. #### ESI The *.xml files are associated with *.xsd files, which describe the structure of the ESI XML files. To update the ESI device descriptions, both file types should therefore be updated. #### **Device differentiation** EtherCAT devices/slaves are distinguished by four properties, which determine the full device identifier. For example, the device identifier EL2521-0025-1018 consists of: - · family key "EL" - name "2521" - type "0025" - · and revision "1018" Fig. 24: Identifier structure The order identifier consisting of name + type (here: EL2521-0010) describes the device function. The revision indicates the technical progress and is managed by Beckhoff. In principle, a device with a higher revision can replace a device with a lower revision, unless specified otherwise, e.g. in the documentation. Each revision has its own ESI description. See further notes [8]. #### **Online description** If the EtherCAT configuration is created online through scanning of real devices (see section Online setup) and no ESI descriptions are available for a slave (specified by name and revision) that was found, the System Manager asks whether the description stored in the device should be used. In any case, the System Manager needs this information for setting up the cyclic and acyclic communication with the slave correctly. Fig. 25: OnlineDescription information window (TwinCAT 2) In TwinCAT 3 a similar window appears, which also offers the Web update: Fig. 26: Information window OnlineDescription (TwinCAT 3) If possible, the *Yes* is to be rejected and the required ESI is to be requested from the device manufacturer. After installation of the XML/XSD file the configuration process should be repeated. #### NOTE #### Changing the "usual" configuration through a scan - ✓ If a scan discovers a device that is not yet known to TwinCAT, distinction has to be made between two cases. Taking the example here of the EL2521-0000 in the revision 1019 - a) no ESI is present for the EL2521-0000 device at all, either for the revision 1019 or for an older revision. The ESI must then be requested from the manufacturer (in this case Beckhoff). - b) an ESI is present for the EL2521-0000 device, but only in an older revision, e.g. 1018 or 1017. In this case an in-house check should first be performed to determine whether the spare parts stock allows the integration of the increased revision into the configuration at all. A new/higher revision usually also brings along new features. If these are not to be used, work can continue without reservations with the previous revision 1018 in the configuration. This is also stated by the Beckhoff compatibility rule. Refer in particular to the chapter "General notes on the use of Beckhoff EtherCAT IO components" and for manual configuration to the chapter "Offline configuration creation". If the OnlineDescription is used regardless, the System Manager reads a copy of the device description from the EEPROM in the EtherCAT slave. In complex slaves the size of the EEPROM may not be sufficient for the complete ESI, in which case the ESI would be *incomplete* in the configurator. Therefore it's recommended using an offline ESI file with priority in such a case. The System Manager creates for online recorded device descriptions a new file "OnlineDescription0000...xml" in its ESI directory, which contains all ESI descriptions that were read online. #### OnlineDescriptionCache000000002.xml #### Fig. 27: File OnlineDescription.xml created by the System Manager Is a slave desired to be added manually to the configuration at a later stage, online created slaves are indicated by a prepended symbol ">" in the selection list (see Figure Indication of an online recorded ESI of EL2521 as an example). Fig. 28: Indication of an online recorded ESI of EL2521 as an example If such ESI files are used and the manufacturer's files become available later, the file OnlineDescription.xml should be deleted as follows: - · close all System Manager windows - · restart TwinCAT in Config mode - · delete "OnlineDescription0000...xml" - · restart TwinCAT System Manager This file should not be visible after this procedure, if necessary press <F5> to update #### OnlineDescription for TwinCAT 3.x In addition to the file described above "OnlineDescription0000...xml", a so called EtherCAT cache with new discovered devices is created by TwinCAT 3.x, e.g. under Windows 7: C:\User\[USERNAME]\AppData\Roaming\Beckhoff\TwinCAT3\Components\Base\EtherCATCache.xmI (Please note the language settings of the OS!) You have to delete this file, too. #### **Faulty ESI file** If an ESI file is
faulty and the System Manager is unable to read it, the System Manager brings up an information window. Fig. 29: Information window for faulty ESI file (left: TwinCAT 2; right: TwinCAT 3) #### Reasons may include: - Structure of the *.xml does not correspond to the associated *.xsd file \rightarrow check your schematics - Contents cannot be translated into a device description \rightarrow contact the file manufacturer ### 5.3 General Notes - EtherCAT Slave Application This summary briefly deals with a number of aspects of EtherCAT Slave operation under TwinCAT. More detailed information on this may be found in the corresponding sections of, for instance, the <u>EtherCAT</u><u>System Documentation</u>. #### Diagnosis in real time: WorkingCounter, EtherCAT State and Status Generally speaking an EtherCAT Slave provides a variety of diagnostic information that can be used by the controlling task. This diagnostic information relates to differing levels of communication. It therefore has a variety of sources, and is also updated at various times. Any application that relies on I/O data from a fieldbus being correct and up to date must make diagnostic access to the corresponding underlying layers. EtherCAT and the TwinCAT System Manager offer comprehensive diagnostic elements of this kind. Those diagnostic elements that are helpful to the controlling task for diagnosis that is accurate for the current cycle when in operation (not during commissioning) are discussed below. Fig. 30: Selection of the diagnostic information of an EtherCAT Slave In general, an EtherCAT Slave offers communication diagnosis typical for a slave (diagnosis of successful participation in the exchange of process data, and correct operating mode) This diagnosis is the same for all slaves. as well as function diagnosis typical for a channel (device-dependent) See the corresponding device documentation The colors in Fig. Selection of the diagnostic information of an EtherCAT Slave also correspond to the variable colors in the System Manager, see Fig. Basic EtherCAT Slave Diagnosis in the PLC. | Colour | Meaning | |--------|--| | yellow | Input variables from the Slave to the EtherCAT Master, updated in every cycle | | red | Output variables from the Slave to the EtherCAT Master, updated in every cycle | | green | Information variables for the EtherCAT Master that are updated acyclically. This means that it is possible that in any particular cycle they do not represent the latest possible status. It is therefore useful to read such variables through ADS. | Fig. Basic EtherCAT Slave Diagnosis in the PLC shows an example of an implementation of basic EtherCAT Slave Diagnosis. A Beckhoff EL3102 (2-channel analogue input terminal) is used here, as it offers both the communication diagnosis typical of a slave and the functional diagnosis that is specific to a channel. Structures are created as input variables in the PLC, each corresponding to the process image. Fig. 31: Basic EtherCAT Slave Diagnosis in the PLC The following aspects are covered here: | Code | Function | Implementation | Application/evaluation | |------|---|--|--| | A | The EtherCAT Master's diagnostic information | | At least the DevState is to be evaluated for the most recent cycle in the PLC. | | | updated acyclically (yellow) or provided acyclically (green). | | The EtherCAT Master's diagnostic information offers many more possibilities than are treated in the EtherCAT System Documentation. A few keywords: | | | | | CoE in the Master for communication
with/through the Slaves | | | | | Functions from TcEtherCAT.lib | | | | | Perform an OnlineScan | | В | In the example chosen (EL3102) the EL3102 comprises two analogue input channels that transmit a single function status for the most recent cycle. | the bit significations may be found in the device documentation other devices may supply more information, or none that is typical of a slave | In order for the higher-level PLC task (or corresponding control applications) to be able to rely on correct data, the function status must be evaluated there. Such information is therefore provided with the process data for the most recent cycle. | | С | For every EtherCAT Slave that has cyclic process data, the Master displays, using what is known as a WorkingCounter, whether the slave is participating successfully and without error in the cyclic exchange of process data. This important, elementary information is therefore provided for the most recent cycle in the System Manager 1. at the EtherCAT Slave, and, with identical contents 2. as a collective variable at the | WcState (Working Counter) 0: valid real-time communication in the last cycle 1: invalid real-time communication This may possibly have effects on the process data of other Slaves that are located in the same SyncUnit | In order for the higher-level PLC task (or corresponding control applications) to be able to rely on correct data, the communication status of the EtherCAT Slave must be evaluated there. Such information is therefore provided with the process data for the most recent cycle. | | | EtherCAT Master (see Point A) | | | | | for linking. | | | | D | Diagnostic information of the EtherCAT Master which, while it is represented at the slave for linking, is actually determined by the Master for the Slave concerned and represented there. This information cannot be characterized as real-time, because it | State current Status (INITOP) of the Slave. The Slave must be in OP (=8) when operating normally. AdsAddr | Information variables for the EtherCAT Master that are updated acyclically. This means that it is possible that in any particular cycle they do not represent the latest possible status. It is therefore possible to read such variables through ADS. | | | is only rarely/never changed,
except when the system starts up is itself determined acyclically (e.g.
EtherCAT Status) | The ADS address is useful for communicating from the PLC/task via ADS with the EtherCAT Slave, e.g. for reading/writing to the CoE. The AMS-NetID of a slave corresponds to the AMS-NetID of the EtherCAT Master; communication with the individual Slave is possible via the port (= EtherCAT address). | | #### NOTE #### **Diagnostic information** It is strongly recommended that the diagnostic information made available is evaluated so that the application can react accordingly. #### **CoE Parameter Directory** The CoE parameter directory (CanOpen-over-EtherCAT) is used to manage the set values for the slave concerned. Changes may, in some circumstances, have to be made here when commissioning a relatively complex EtherCAT Slave. It can be accessed through the TwinCAT System Manager, see Fig. *EL3102*, *CoE directory*: Fig. 32: EL3102, CoE directory #### EtherCAT System Documentation The comprehensive description in the <u>EtherCAT System Documentation</u> (EtherCAT Basics --> CoE Interface) must be observed! #### A few brief extracts: - Whether changes in the online directory are saved locally in the slave depends on the device. EL terminals (except the EL66xx) are able to save in this way. - The user must manage the changes to the StartUp list. #### **Commissioning aid in the TwinCAT System Manager** Commissioning interfaces are being introduced as part of an ongoing process for EL/EP EtherCAT devices. These are available in TwinCAT System Managers from TwinCAT 2.11R2 and above. They are integrated into the System Manager through appropriately extended ESI configuration files. Fig. 33: Example of commissioning aid for a EL3204 This commissioning process simultaneously manages - · CoE Parameter Directory - · DC/FreeRun mode - · the available process data records (PDO) Although the "Process Data", "DC", "Startup" and "CoE-Online" that used to be necessary for this are still displayed, it is recommended that, if the commissioning aid is used, the automatically generated settings are not changed by it. The commissioning tool does not cover every possible application of an EL/EP device. If the available setting options are not adequate, the user can make the DC, PDO and CoE settings manually, as in the past. #### EtherCAT State: automatic default behaviour of the TwinCAT System Manager and manual operation After the operating power is switched on, an EtherCAT Slave must go through the following statuses - INIT - PREOP - SAFEOP - OP to ensure sound operation. The EtherCAT Master directs these statuses in accordance with the initialization routines that are defined for commissioning the device by the ES/XML and user settings (Distributed Clocks (DC), PDO, CoE). See also the section on
"Principles of <u>Communication, EtherCAT State Machine [> 21]</u>" in this connection. Depending how much configuration has to be done, and on the overall communication, booting can take up to a few seconds. The EtherCAT Master itself must go through these routines when starting, until it has reached at least the OP target state. The target state wanted by the user, and which is brought about automatically at start-up by TwinCAT, can be set in the System Manager. As soon as TwinCAT reaches the status RUN, the TwinCAT EtherCAT Master will approach the target states. #### Standard setting The advanced settings of the EtherCAT Master are set as standard: - · EtherCAT Master: OP - Slaves: OP This setting applies equally to all Slaves. Fig. 34: Default behaviour of the System Manager In addition, the target state of any particular Slave can be set in the "Advanced Settings" dialogue; the standard setting is again OP. Fig. 35: Default target state in the Slave #### **Manual Control** There are particular reasons why it may be appropriate to control the states from the application/task/PLC. For instance: - · for diagnostic reasons - · to induce a controlled restart of axes - · because a change in the times involved in starting is desirable In that case it is appropriate in the PLC application to use the PLC function blocks from the *TcEtherCAT.lib*, which is available as standard, and to work through the states in a controlled manner using, for instance, *FB_EcSetMasterState*. It is then useful to put the settings in the EtherCAT Master to INIT for master and slave. Fig. 36: PLC function blocks #### **Note regarding E-Bus current** EL/ES terminals are placed on the DIN rail at a coupler on the terminal strand. A Bus Coupler can supply the EL terminals added to it with the E-bus system voltage of 5 V; a coupler is thereby loadable up to 2 A as a rule. Information on how much current each EL terminal requires from the E-bus supply is available online and in the catalogue. If the added terminals require more current than the coupler can supply, then power feed terminals (e.g. EL9410) must be inserted at appropriate places in the terminal strand. The pre-calculated theoretical maximum E-Bus current is displayed in the TwinCAT System Manager as a column value. A shortfall is marked by a negative total amount and an exclamation mark; a power feed terminal is to be placed before such a position. | General Ada | General Adapter EtherCAT Online CoE - Online | | | | | | | |-------------|--|---------|--------|------------|----------|---------|--| | NetId: | NetId: 10.43.2.149.2.1 | | | Advanced S | Settings | | | | | | | | | | | | | Number | Box Name | Address | Туре | In Size | Out S | E-Bus (| | | 1 | Term 1 (EK1100) | 1001 | EK1100 | | | | | | 2 | Term 2 (EL3102) | 1002 | EL3102 | 8.0 | | 1830 | | | 4 3 | Term 4 (EL2004) | 1003 | EL2004 | | 0.4 | 1730 | | | 4 | Term 5 (EL2004) | 1004 | EL2004 | | 0.4 | 1630 | | | <u>™</u> 5 | Term 6 (EL7031) | 1005 | EL7031 | 8.0 | 8.0 | 1510 | | | - 6 | Term 7 (EL2808) | 1006 | EL2808 | | 1.0 | 1400 | | | 1 7 | Term 8 (EL3602) | 1007 | EL3602 | 12.0 | | 1210 | | | 8 | Term 9 (EL3602) | 1008 | EL3602 | 12.0 | | 1020 | | | ¶ 9 | Term 10 (EL3602) | 1009 | EL3602 | 12.0 | | 830 | | | 1 0 | Term 11 (EL3602) | 1010 | EL3602 | 12.0 | | 640 | | | 1 1 | Term 12 (EL3602) | 1011 | EL3602 | 12.0 | | 450 | | | 12 | Term 13 (EL3602) | 1012 | EL3602 | 12.0 | | 260 | | | 13 | Term 14 (EL3602) | 1013 | EL3602 | 12.0 | | 70 | | | cii 14 | Term 3 (EL6688) | 1014 | EL6688 | 22.0 | | -240! | | Fig. 37: Illegally exceeding the E-Bus current From TwinCAT 2.11 and above, a warning message "E-Bus Power of Terminal..." is output in the logger window when such a configuration is activated: #### Message E-Bus Power of Terminal 'Term 3 (EL6688)' may to low (-240 mA) - please check! Fig. 38: Warning message for exceeding E-Bus current #### NOTE #### **Caution! Malfunction possible!** The same ground potential must be used for the E-Bus supply of all EtherCAT terminals in a terminal block! ### 5.4 Object description and parameterization ### • #### **EtherCAT XML Device Description** The display matches that of the CoE objects from the EtherCAT XML Device Description. We recommend downloading the latest XML file from the download area on the Beckhoff Website and installing it according to the installation instructions. #### Introduction #### **Object overview** - Command object [▶ 59] - Information / diagnosis data [▶ 59] - Standard objects [▶ 61] #### **Command object** #### **Index B000 LIC Command** | Index
(hex) | Name | Meaning | Data type | Flags | Default | |----------------|-------------|---|---------------------|-------|-------------| | B000:0 | LIC Command | Max. Subindex | UINT8 | RO | 0x03 (3dec) | | B000:01 | Request | Commands can be sent to the terminal via the request object | OCTET-
STRING[2] | RW | {0} | | B000:02 | Status | Status of the currently executed command 1: command error-free 255: command is executed | UINT8 | RO | 0x00 (0dec) | | B000:03 | Response | Optional response value of the command | OCTET-
STRING[4] | RO | {0} | #### Information / diagnosis data #### **Index 10F3 Diagnosis History** | Index
(hex) | Name | Meaning | Data type | Flags | Default | |----------------|----------------------------------|--|----------------------|-------|----------------------------| | 10F3:0 | Diagnosis History | Max. subindex | UINT8 | RO | 0x37 (55 _{dec}) | | 10F3:01 | Maximum Mes-
sages | Maximum number of stored messages A maximum of 50 messages can be stored | UINT8 | RO | 0x32 (50 _{dec}) | | 10F3:02 | Newest Message | Subindex of the latest message | UINT8 | RO | 0x00 (0 _{dec}) | | 10F3:03 | Newest Acknowl-
edged Message | Subindex of the last confirmed message | UINT8 | RW | 0x00 (0 _{dec}) | | 10F3:04 | New Messages
Available | Indicates that a new message is available | BOOLEAN | RO | 0x00 (0 _{dec}) | | 10F3:05 | Flags | not used | UINT16 | RW | 0x0000 (0 _{dec}) | | 10F3:06 | Diagnosis Mes-
sage 001 | Message 1 | OCTET-
STRING[28] | RO | {0} | | | | | | | | | 10F3:37 | Diagnosis Mes-
sage 050 | Message 50 | OCTET-
STRING[28] | RO | {0} | #### **Index 10F8 Actual Time Stamp** | Index
(hex) | Name | Meaning | Data type | Flags | Default | |----------------|----------------------|------------|-----------|-------|---------| | 10F8:0 | Actual Time
Stamp | Time stamp | UINT64 | RO | | ### **Index 9001 LIC Identity Data** | Index
(hex) | Name | Meaning | Data type | Flags | Default | |----------------|-------------------|---------------|-----------------------|-------|------------------------| | 9001:0 | LIC Identity Data | Max. subindex | UINT8 | RO | 0x5(5 _{dec}) | | 9001:01 | Public Key | reserved | OCTET-
STRING[256] | RO | - | | 9001:02 | Certificate | reserved | OCTET-
STRING[256] | RO | - | | 9001:03 | Public EK | reserved | OCTET-
STRING[256] | RO | - | | 9001:04 | Certificate EK | reserved | OCTET-
STRING[256] | RO | - | | 9001:05 | Volume Number | reserved | OCTET-
STRING[256] | RO | - | #### **Index 9002 LIC Session Data** | Index
(hex) | Name | Meaning | Data type | Flags | Default | |----------------|-------------------|---------------|-----------------------|-------|------------------------| | 9002:0 | LIC Identity Data | Max. Subindex | UINT8 | RO | 0x4(4 _{dec}) | | 9002:01 | Signature | reserved | OCTET-
STRING[256] | RO | - | | 9002:02 | PCR Value | reserved | OCTET-
STRING[256] | RO | - | | 9002:03 | Tick Stamp | 1, | OCTET-
STRING[256] | RO | - | | 9002:04 | Current Ticks | reserved | OCTET-
STRING[256] | RO | - | #### **Index B008 LIC Command** | Index
(hex) | Name | Meaning | Data type | Flags | Default | |----------------|-------------|---------------|----------------------|-------|--------------------------| | B008:0 | LIC Control | Max. Subindex | UINT8 | RO | 0x03 (3 _{dec}) | | B008:01 | Control | reserved | UINT16 | RW | {0} | | B008:02 | Status | reserved | UINT16 | RO | 0x00 (0 _{dec}) | | B008:03 | Challenge | 1, 1, | OCTET-
STRING[20] | RW | {0} | #### **Index F900 LIC time data** | Index
(hex) | Name | Meaning | Data type | Flags | Default | |----------------|----------------|--|-----------|-------|------------------------------| | F900:0 | LIC time data | Max. subindex | UINT8 | RO | 0x01 (1 _{dec}) | | F900:01 | Operating Time | Non-erasable operating hours counter [s] | UINT32 | RO | 0x0000000(0d _{ec}) | #### **Index FB40 Memory interface** | Index
(hex) | Name | Meaning | Data type | Flags | Default | |----------------|------------------|--|---------------------|-------|--------------------------------| | FB40:0 | Memory interface | Memory interface to Beckhoff certificate | UINT8 | RO | 0x03 (3 _{dec}) | | FB40:01 | Control | Virtual address of memory | UINT32 | RW | 0x00000000 (0 _{dec}) | | FB40:02 | Status | Length of data | UINT16 | RW | 0x0000 (0 _{dec}) | | FB40:03 | Challenge | = | OCTET-
STRING[8] | RW P | {0} | ### **Standard objects** #### **Index 1000 Device type** | Index
(hex) | Name | Meaning | Data type | Flags | Default | |----------------|------|--|-----------|-------|-----------------------------| | 1000:0 | ,,, | Device type of the EtherCAT slave: The low word contains the CoE profile used (5001). The high word contains the module profile according to the modular device profile. | UINT32 | RO | 0x029E1389
(43914121dec) | #### **Index 1008
Device name** | - 1 | Index
(hex) | Name | Meaning | Data type | Flags | Default | |-----|----------------|-------------|-----------------------------------|-----------|-------|-------------| | | 1008:0 | Device name | Device name of the EtherCAT slave | STRING | RO | EL6070-0000 | #### **Index 1009 Hardware version** | Index
(hex) | Name | Meaning | Data type | Flags | Default | |----------------|------------------|--|-----------|-------|---------| | 1009:0 | Hardware version | Hardware version of the EtherCAT slave | STRING | RO | 00 | #### **Index 100A Software version** | Index
(hex) | Name | Meaning | Data type | Flags | Default | |----------------|------------------|--|-----------|-------|---------| | 100A:0 | Software version | Firmware version of the EtherCAT slave | STRING | RO | 01 | ### **Index 1018 Identity** | Index
(hex) | Name | Meaning | Data type | Flags | Default | |----------------|---------------|--|-----------|-------|--------------------------------| | 1018:0 | Identity | Information for identifying the slave | UINT8 | RO | 0x04 (4 _{dec}) | | 1018:01 | Vendor ID | Vendor ID of the EtherCAT slave | UINT32 | RO | 0x00000002 (2 _{dec}) | | 1018:02 | Product code | Product code of the EtherCAT slave | UINT32 | RO | 0x17B63052
(397815890dec) | | 1018:03 | Revision | Revision number of the EtherCAT slave; the low word (bit 0-15) indicates the special terminal number, the high word (bit 16-31) refers to the device description | UINT32 | RO | 0x00100000
(1048576dec) | | 1018:04 | Serial number | If applicable, contains the ID number that can be read from the outside. | UINT32 | RO | 0x0000000 (0 _{dec}) | #### **Index 1C00 Sync manager type** | Index
(hex) | Name | Meaning | Data type | Flags | Default | |----------------|-------------------|--|-----------|-------|--------------------------| | 1C00:0 | Sync manager type | Using the sync managers | UINT8 | RO | 0x04 (4 _{dec}) | | 1C00:01 | SubIndex 001 | Sync-Manager Type Channel 1: Mailbox Write | UINT8 | RO | 0x01 (1 _{dec}) | | 1C00:02 | SubIndex 002 | Sync-Manager Type Channel 2: Mailbox Read | UINT8 | RO | 0x02 (2 _{dec}) | #### **Index F000 Modular device profile** | Index
(hex) | Name | Meaning | Data type | Flags | Default | |----------------|---------------------------------|---|-----------|-------|-----------------------------| | F000:0 | Modular
device profile | General information for the modular device profile | UINT8 | RO | 0x02 (2 _{dec}) | | F000:01 | Module index distance | Index spacing of the objects of the individual channels | UINT16 | RO | 0x0010 (16 _{dec}) | | 1 | Maximum
number of
modules | Number of channels | UINT16 | RO | 0x0001 (1 _{dec}) | #### **Index F008 Code word** | Index
(hex) | Name | Meaning | Data type | Flags | Default | |----------------|-----------|----------|-----------|-------|--------------------------------| | F008:0 | Code word | reserved | UINT32 | RW | 0x00000000 (0 _{dec}) | #### **Index F010 Module list** | Index
(hex) | Name | Meaning | Data type | Flags | Default | |----------------|--------------|----------------|-----------|-------|-------------------------------------| | F010:0 | Module list | Max. Subindex | UINT8 | RW | 0x02 (2 _{dec}) | | F010:01 | SubIndex 001 | Profile number | UINT32 | RW | 0x0000029E
(670 _{dec}) | ### 5.5 Reading and writing files #### Using the sample programs This document contains sample applications of our products for certain areas of application. The application notes provided here are based on typical features of our products and only serve as examples. The notes contained in this document explicitly do not refer to specific applications. The customer is therefore responsible for assessing and deciding whether the product is suitable for a particular application. We accept no responsibility for the completeness and correctness of the source code contained in this document. We reserve the right to modify the content of this docu- ment at any time and accept no responsibility for errors and missing information. The 1 MB flash memory of the EL6070 can be used to store files. - · Up to 20 files can be stored. - · The file content is stored in binary format. - Before a file is read, the special file system can read a directory containing names of files and their sizes and additional information. A so-called dot file "." have to be read out for it: if the name or the ASCII character for "." is passed by FoE upload (ASCII value 0x2E), a defined header of information from the memory of the terminal is returned, which contains information about all stored files in the terminal. For example, the following memory contents are present: Detailed information to this can in principle be taken from the present example program. - When saving a file, a freely selectable 32 bit password is expected. Each file can have its own password. If none is given, PW=0 is accepted from the terminal. For reading out the file, the password is then needed again, possibly also PW=0 if none was specified. - An existing file will be overwritten when a file is saved under the same name. A file can be deleted by a write access with the file name and a transferred file size of 0 (correspondingly without content). The following sample program uses the TwinCAT functions of the Tc2_EtherCAT library for the FoE read and write access as well as the file access functions of the Tc2_System library with a fixed path "C: \EL6070_files\". Hence, a drive "C:" and such folder have to be existing. The device configuration is also present within this example: IPC + EK1100 + EL6070 + EL9011. #### Explanatory notes for the sample program "EL6070_Access" The sample program uses a TwinCAT 3 visualization. It illustrates file handling for the terminal on the left and file access to the control PC on the right. First, the data are loaded into the controller memory. Then they can either be loaded or saved on/ to the control computer as file, or they can be read to or written from the terminal: Fig. 39: TwinCAT 3 - visualization of the sample program "EL6070 Access" #### **Notes:** - The needed NetId for terminal access will be identified by the already existing link within the configuration. Therefrom the address for the PLC system will be derived. - · This example program does not use a checksum and does not support the password function. - A duration while file access on the terminal with a transfer rate of several 1000 bytes/s have to be expected (e.g. over 3 minutes for 1 MB). - The files that are loaded, stored and deleted on the right are located on the controller. This has to be taken into account during remote access. The path can only point to the local computer's file system and is preset "C:\EL6070_files\". Network paths cannot be specified here. In addition, special care is required for file access on the control computer. #### **Download:** Sample program "EL6070_Access": https://infosys.beckhoff.com/content/1033/el6070/Resources/zip/4707490699.zip #### Preparations for starting the sample programs (tnzip file / TwinCAT 3) • Click on the download button to save the Zip archive locally on your hard disk, then unzip the *.tnzip archive file in a temporary folder. Fig. 40: Opening the *. tnzip archive - · Select the .tnzip file (sample program). - A further selection window opens. Select the destination directory for storing the project. - For a description of the general PLC commissioning procedure and starting the program please refer to the terminal documentation or the EtherCAT system documentation. - The EtherCAT device of the example should usually be declared your present system. After selection of the EtherCAT device in the "Solutionexplorer" select the "Adapter" tab and click on "Search...": Fig. 41: Search of the existing HW configuration for the EtherCAT configuration of the example Checking NetId: the "EtherCAT" tab of the EtherCAT device shows the configured NetId: The first four numbers must be identical with the project NetId of the target system. The project NetId can be viewed within the TwinCAT environment above, where a pull down menu can be opened to choose a target system (by clicking right in the text field). The number blocks are placed in brackets there next to each computer name of a target system. - Modify the NetId: By right clicking on "EtherCAT device" within the solution explorer a context menu opens where "Change NetId..." have to be selected. The first four numbers of the NetId of the target computer must be entered; both last values are 4.1 usually. Example: - NetId of project: myComputer (123.45.67.89.1.1) - Entry via "Change NetId…": 123.45.67.89.4.1 ## 6 Appendix ### 6.1 EtherCAT AL Status Codes For detailed information please refer to the **EtherCAT** system description. ### 6.2 Firmware compatibility Beckhoff EtherCAT devices are delivered with the latest available firmware version. Compatibility of firmware and hardware is mandatory; not every combination ensures compatibility. The overview below shows the hardware versions on which a firmware can be operated. #### Note - · It is recommended to use the newest possible firmware for the respective hardware - Beckhoff is not under any obligation to provide customers with free firmware updates for delivered products. #### NOTE #### Risk of damage to the device! Pay attention to the instructions for firmware updates on the separate page. If a device is placed in BOOT-STRAP mode for a firmware update, it does not check when downloading whether the new firmware is suitable. This can result in damage to the device! Therefore, always make sure that
the firmware is suitable for the hardware version! | EL6070-0000 | | | | | | | | | |---------------|----------|------------------|-----------------|--|--|--|--|--| | Hardware (HW) | Firmware | Revision no. | Date of release | | | | | | | 00 - 01 | 01 | EL6070-0000-0016 | 2013/10 | | | | | | | 02 – 04* | 02 | | 2014/12 | | | | | | | | 03 | EL6070-0000-0017 | 2015/03 | | | | | | | | 04 | | 2016/01 | | | | | | | | | EL6070-0000-0018 | 2017/01 | | | | | | | | 05* | EL6070-0000-0019 | 2020/02 | | | | | | ^{*)} This is the current compatible firmware/hardware version at the time of the preparing this documentation. Check on the Beckhoff web page whether more up-to-date <u>documentation</u> is available. ### 6.3 Support and Service Beckhoff and their partners around the world offer comprehensive support and service, making available fast and competent assistance with all questions related to Beckhoff products and system solutions. #### **Beckhoff's branch offices and representatives** Please contact your Beckhoff branch office or representative for <u>local support and service</u> on Beckhoff products! The addresses of Beckhoff's branch offices and representatives round the world can be found on her internet pages: https://www.beckhoff.com You will also find further documentation for Beckhoff components there. #### **Beckhoff Support** Support offers you comprehensive technical assistance, helping you not only with the application of individual Beckhoff products, but also with other, wide-ranging services: - · support - · design, programming and commissioning of complex automation systems - · and extensive training program for Beckhoff system components Hotline: +49 5246 963 157 Fax: +49 5246 963 9157 e-mail: support@beckhoff.com #### **Beckhoff Service** The Beckhoff Service Center supports you in all matters of after-sales service: - · on-site service - · repair service - · spare parts service - · hotline service Hotline: +49 5246 963 460 Fax: +49 5246 963 479 e-mail: service@beckhoff.com #### **Beckhoff Headquarters** Beckhoff Automation GmbH & Co. KG Huelshorstweg 20 33415 Verl Germany Phone: +49 5246 963 0 Fax: +49 5246 963 198 e-mail: info@beckhoff.com web: https://www.beckhoff.com More Information: www.beckhoff.com/EL6070 Beckhoff Automation GmbH & Co. KG Hülshorstweg 20 33415 Verl Germany Phone: +49 5246 9630 info@beckhoff.com www.beckhoff.com